Bio-inspired electronics: Soft, biohybrid, and “living” neural interfaces

Klenance
47 Min Read

  • Chen, Y. et al. Flexible inorganic bioelectronics. Npj Flex. Electron. 4, 2 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 51, 1033–1045 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mushtaq, F. et al. One hundred years of EEG for brain and behaviour research. Nat. Hum. Behav. 8, 1437–1443 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hill, C. E. et al. Continuous EEG is associated with favorable hospitalization outcomes for critically ill patients. Neurology 92, e9–e18 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kwon, S. et al. At-home wireless sleep monitoring patches for the clinical assessment of sleep quality and sleep apnea. Sci. Adv. 9, eadg9671 (2023).

  • Liang, W., Pei, H., Cai, Q., Wang, Y. & Scalp, E. E. G. epileptogenic zone recognition and localization based on long-term recurrent convolutional network. Neurocomputing 396, 569–576 (2020).

    Article 

    Google Scholar
     

  • Anjum, M. F. et al. Resting-state EEG measures cognitive impairment in Parkinson’s disease. Npj Parkinson’s Dis. 10, 6 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wolthuis, N. et al. Distinct slow-wave activity patterns in resting-state electroencephalography and their relation to language functioning in low-grade glioma and meningioma patients. Front. Hum. Neurosci. 16, 748128 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Waldert, S. Invasive vs. non-invasive neuronal signals for brain-machine interfaces: Will one prevail? Front. Neurosci. 10, 295 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication via handwriting. Nature 593, 249–254 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheth, S. A. et al. Deep brain stimulation for depression informed by intracranial recordings. Biol. Psychiatry 92, 246–251 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kennedy, P. R. & Bakay, R. A. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport 9, 1707–1711 (1998).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Patrick-Krueger, K. M., Burkhart, I. & Contreras-Vidal, J. L. The state of clinical trials of implantable brain–computer interfaces. Nat. Rev. Bioeng. 3, 50–67 (2024).

  • Guo, J. et al. Seizure outcome after intraoperative rlectrocorticography-tailored epilepsy surgery. Neurology 102, e209430 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dasgupta, D., Miserocchi, A., McEvoy, A. W. & Duncan, J. S. Previous, current, and future stereotactic EEG techniques for localising epileptic foci. Expert Rev. Med. Devices 19, 571–580 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernabei, J. M. et al. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 146, 2248–2258 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Skarpaas, T. L., Jarosiewicz, B. & Morrell, M. J. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res. 153, 68–70 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Roa, J. A. et al. Responsive neurostimulation of the thalamus for the treatment of refractory epilepsy. Front. Hum. Neurosci. 16, 926337 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Metzger, S. L. et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature 620, 1037–1046 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Duraivel, S. et al. High-resolution neural recordings improve the accuracy of speech decoding. Nat. Commun. 14, 6938 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. New Engl. J. Med. 385, 217–227 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lorach, H. et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 618, 126–133 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flesher, S. N. et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372, 831–836 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fifer, M. S. et al. Intracortical somatosensory stimulation to elicit fingertip sensations in an individual with spinal Cord Injury. Neurology 98, e679–e687 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Adam, E. M., Brown, E. N., Kopell, N. & McCarthy, M. M. Deep brain stimulation in the subthalamic nucleus for Parkinson’s disease can restore dynamics of striatal networks. Proc. Natl. Acad. Sci. USA 119, e2120808119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Oehrn, C. R. et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinson’s disease: a blinded randomized feasibility trial. Nat. Med. 30, 3345–3356 (2024).

  • Nho, Y. H. et al. Responsive deep brain stimulation guided by ventral striatal electrophysiology of obsession durably ameliorates compulsion. Neuron 112, 73–83 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schalk, G. et al. Translation of neurotechnologies. Nat. Rev. Bioeng. 2, 637–652 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Qi, Y., Kang, S.-K. & Fang, H. Advanced materials for implantable neuroelectronics. MRS Bull. 48, 475–483 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brain–computer interfaces. Nat. Electron. 6, 109–118 (2023).

    Article 
    MATH 

    Google Scholar
     

  • Zhang, E. N. et al. Mechanically matched silicone brain implants reduce brain foreign body response. Adv. Mater. Technol. 6, 2000909 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Apollo, N. V. et al. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. J. Neural Eng. 17, 041002 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Adewole, D. O., Serruya, M. D., Wolf, J. A. & Cullen, D. K. Bioactive neuroelectronic interfaces. Front. Neurosci. 13, 269 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, Y. et al. Macrophages modulate stiffness-related foreign body responses through plasma membrane deformation. Proc. Natl. Acad. Sci. USA 120, e2213837120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carnicer-Lombarte, A., Chen, S.-T., Malliaras, G. G. & Barone, D. G. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolarcik, C. L. et al. Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter 11, 4847–4861 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, H., Bellamkonda, R. V., Sun, W. & Levenston, M. E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2, 81 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhao, S. et al. Tracking neural activity from the same cells during the entire adult life of mice. Nat. Neurosci. 26, 696–710 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bi, L. et al. Soft, multifunctional MXene-coated fiber microelectrodes for biointerfacing. ACS Nano 18, 23217–23231 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C. & Pasquali, M. Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano 9, 4465–4474 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Driscoll, N. et al. Two-dimensional Ti3C2 MXene for High-Resolution Neural Interfaces. ACS Nano 12, 10419–10429 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Driscoll, N. et al. Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. Commun. Biol. 4, 136 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30, 1706520 (2018).

    Article 

    Google Scholar
     

  • Rao, Z. et al. All-polymer based stretchable rubbery electronics and sensors. Adv. Funct. Mater.2, 2111232 (2022).

    Article 

    Google Scholar
     

  • Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Seymour, J. P. & Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28, 3594–3607 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration. Sci. Adv. 3, e1601966 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Portillo-Lara, R., Goding, J. A. & Green, R. A. Adaptive biomimicry: design of neural interfaces with enhanced biointegration. Curr. Opin. Biotechnol. 72, 62–68 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Vitale, F. et al. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays. PLOS ONE 13, e0206137 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rochford, A. E., Carnicer-Lombarte, A., Curto, V. F., Malliaras, G. G. & Barone, D. G. When bio meets technology: Biohybrid neural interfaces. Adv. Mater. 32, 1903182 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boulingre, M., Portillo-Lara, R. & Green, R. A. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem. Commun. 59, 14745–14758 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Carnicer-Lombarte, A., Malliaras, G. G. & Barone, D. G. The future of biohybrid regenerative Bioelectronics. Adv. Mater.n/a, 2408308 (2024).


    Google Scholar
     

  • Chen, C., Bai, X., Ding, Y. & Lee, I.-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 23, 25 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Adewole, D. O. et al. Development of optically controlled ‘living electrodes’ with long-projecting axon tracts for a synaptic brain-machine interface. Sci. Adv. 7, eaay5347 (2021).

  • Spencer, K. C. et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci. Rep. 7, 1952 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Oxley, T. J. et al. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J. NeuroInterv. Surg. 13, 102–108 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Musk, E. Neuralink. An integrated brain-machine interface platform with thousands of channels. Preprint at bioRxiv https://preprints.jmir.org/preprint/16194 (2019).

  • Hettick, M. et al. The layer 7 cortical interface: A scalable and minimally invasive brain–computer interface platform. Preprint at bioRxiv https://doi.org/10.1101/2022.01.02.474656 (2022).

  • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mariello, M., Kim, K., Wu, K., Lacour, S. P. & Leterrier, Y. Recent advances in encapsulation of flexible bioelectronic implants: Materials, tchnologies, and characterization methods. Adv. Mater. 34, 2201129 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, A. et al. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306–312 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tyler, W. J. The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504–513 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Castagnola, E., Garg, R., Rastogi, S. K., Cohen-Karni, T. & Cui, X. T. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Biosens. Bioelectron. 191, 113440 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viana, D. et al. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Nat. Nanotechnol. 19, 514–523 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Garg, R., Roman, D. S., Wang, Y., Cohen-Karni, D. & Cohen-Karni, T. Graphene nanostructures for input–output bioelectronics. Biophys. Rev. 2, 041304 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Driscoll, N. et al. Fabrication of Ti3C2 MXene microelectrode arrays for in vivo neural recording. J. Vis. Exp. https://doi.org/10.3791/60741 (2020).

  • Wu, Y. et al. Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants. Sci. Adv. 10, eadp8866 (2024).

  • Zhang, H. et al. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite. ACS Nano 7, 7619–7629 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganji, M. et al. Selective formation of porous Pt nanorods for highly electrochemically efficient neural electrode interfaces. Nano Lett. 19, 6244–6254 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Aregueta-Robles, U. A., Woolley, A. J., Poole-Warren, L. A., Lovell, N. H. & Green, R. A. Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 7, 15 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donahue, M. J. et al. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R Reports 140, 100546 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Spyropoulos G. D., Gelinas J. N., Khodagholy D. Internal ion-gated organic electrochemical transistor: A building block for integrated bioelectronics. Sci. Adv. 5, eaau7378 (2019).

  • Uguz, I. et al. Complementary integration of organic electrochemical transistors for front-end amplifier circuits of flexible neural implants. Sci. Adv. 10, eadi9710 (2024).

  • Tybrandt, K., Kollipara, S. B. & Berggren, M. Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry. Sensors Actuat. B Chem. 195, 651–656 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saleh, A., Koklu, A., Uguz, I., Pappa, A.-M. & Inal, S. Bioelectronic interfaces of organic electrochemical transistors. Nat. Rev. Bioeng. 2, 559–574 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Abidian, M. R., Corey, J. M., Kipke, D. R. & Martin, D. C. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural Attachment, and Neurite Outgrowth of Neural Electrodes. Small 6, 421–429 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. et al. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc. Natl. Acad. Sci. USA 114, 5894–5899 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Skousen, J. L. et al. in Progress in Brain Research (eds Schouenborg, J., Garwicz, M., Danielsen, N.). (Elsevier, 2011).

  • Le Floch, P. et al. Stretchable mesh nanoelectronics for 3D single-cell chronic electrophysiology from developing brain organoids. Adv. Mater. 34, e2106829 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, T.-C. et al. Hydrogels: Properties and applications in biomedicine. Molecules 27, 2902 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Peppas, N. A. & Hoffman, A. S. in Biomaterials Science. (Elsevier, 2020).

  • Niu, J. et al. Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nat. Commun. 5, 3313 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Deng, Y. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kailasa, S. K., Joshi, D. J., Kateshiya, M. R., Koduru, J. R. & Malek, N. I. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Mater. Today Chem. 23, 100746 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hui, Y. et al. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 5, 893–903 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ohm, Y. et al. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 4, 185–192 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ren, X. et al. Highly conductive PPy-PEDOT:PSS hybrid hydrogel with superior biocompatibility for bioelectronics application. ACS Appl. Mater. Interfaces 13, 25374–25382 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, T. et al. Conductive polymer hydrogels crosslinked by electrostatic interaction with PEDOT:PSS dopant for bioelectronics application. Chem. Eng. J. 429, 132430 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, W. & Bellamkonda, R. V. Nanoscale neuro-integrative coatings for neural implants. Biomaterials 26, 2983–2990 (2005).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Eles, J. R. et al. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials 113, 279–292 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • He, W., McConnell, G. C. & Bellamkonda, R. V. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J. Neural Eng. 3, 316 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang A., Zwang T. J. & Lieber C. M. Biochemically functionalized probes for cell-type–specific targeting and recording in the brain. Sci. Adv. 9, https://doi.org/10.1126/sciadv.adk1050 (2023).

  • Zhu, B. et al. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 5, 4523 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Oakes, R. S., Polei, M. D., Skousen, J. L. & Tresco, P. A. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex. Biomaterials 154, 1–11 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Golabchi, A., Woeppel, K. M., Li, X., Lagenaur, C. F. & Cui, X. T. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosens. Bioelectron. 155, 112096 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. Y., Khaing, Z. Z., Siegel, J. J. & Schmidt, C. E. Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo. RSC Adv. 5, 39228–39231 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Winter, J. O., Cogan, S. F. & Rizzo, J. F. III Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes. J. Biomed. Mater. Res. Part B Appl. Biomater. 81B, 551–563 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Zhong, Y. & Bellamkonda, R. V. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 1148, 15–27 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boehler, C. et al. Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 129, 176–187 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhong, Y. & Bellamkonda, R. V. Controlled release of anti-inflammatory agent α-MSH from neural implants. J. Control.Release 106, 309–318 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X., Yue, Z., Higgins, M. J. & Wallace, G. G. Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials 32, 7309–7317 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-W., Serna, F. & Schmidt, C. E. Carboxy-endcapped conductive polypyrrole:  Biomimetic conducting polymer for cell scaffolds and electrodes. Langmuir 22, 9816–9819 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Harris, K. D., Quiroga, R. Q., Freeman, J. & Smith, S. L. Improving data quality in neuronal population recordings. Nat. Neurosci. 19, 1165–1174 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Boehler, C., Carli, S., Fadiga, L., Stieglitz, T. & Asplund, M. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 15, 3557–3578 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garg, R. et al. Graphene and poly (3, 4-ethylenedioxythiophene)–polystyrene sulfonate hybrid nanostructures for input/output bioelectronics. ACS Appl. Nano Mater. 6, 8495–8505 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Chen, J., Liu, F., Abdiryim, T. & Liu, X. An overview of conductive composite hydrogels for flexible electronic devices. Adv. Compos. Hybrid Mater. 7, 35 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, Y., Tan, Y., Lao, J., Gao, H. & Yu, J. Hydrogels for flexible electronics. ACS Nano 17, 9681–9693 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shi, D., Dhawan, V. & Cui, X. T. Bio-integrative design of the neural tissue-device interface. Curr. Opin. Biotechnol. 72, 54–61 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue Responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48–67 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, X. et al. Photothermally triggered shape-adaptable 3D flexible electronics. Adv. Mater. Technol. 2, 1700120 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Self-unfolding flexible microelectrode arrays based on shape memory polymers. Adv. Mater. Technol. 4, 1900566 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yu, M. et al. Self-closing stretchable cuff electrodes for peripheral nerve stimulation and electromyographic signal recording. ACS Appl. Mater. Interfaces 15, 7663–7672 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yi, J. et al. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 624, 295–302 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chen, H., Wang, L., Lu, Y. & Du, X. Bioinspired microcone-array-based living biointerfaces: enhancing the anti-inflammatory effect and neuronal network formation. Microsyst. Nanoeng. 6, 58 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bae, J.-Y. et al. A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing. Nat. Electron. 7, 815–828 (2024).

    Article 
    MATH 

    Google Scholar
     

  • Kennedy, P. R. The cone electrode: a long-term electrode that records from neurites grown onto its recording surface. J. Neurosci. Methods 29, 181–193 (1989).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gearing, M. & Kennedy, P. Histological confirmation of myelinated neural filaments within the tip of the neurotrophic electrode after a decade of neural recordings. Front. Hum. Neurosci. 14, 111 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stieglitz, T., Ruf, H. H., Gross, M., Schuettler, M. & Meyer, J. U. A biohybrid system to interface peripheral nerves after traumatic lesions: design of a high channel sieve electrode. Biosens. Bioelectron. 17, 685–696 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cullen, D. K. et al. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers. J. Neural Eng. 5, 374 (2008).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kameswaran, N. et al. A novel neuroprosthetic interface with the peripheral nervous system using artificially engineered axonal tracts. Neurol. Res. 30, 1063–1067 (2008).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Purcell, E. K., Seymour, J. P., Yandamuri, S. & Kipke, D. R. In vivo evaluation of a neural stem cell-seeded prosthesis. J. Neural Eng. 6, 026005 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azemi, E., Gobbel, G. T. & Cui, X. T. Seeding neural progenitor cells on silicon-based neural probes. J. Neurosurg. 113, 673–681 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Okita K., Kato-Negishi M., Sato K., Onoe H. & Takeuchi S. A neurospheroid cultured on the tip of a fexible microelectrode for cortical microstimulation. In 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS). Chemical and Biological Microsystems Society (2012).

  • Okita K., Kato-Negishi M., Onoe H. & Takeuchi S. Neurospheroid array on a flexible substrate for cortical microstimulation. In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (2013).

  • Tang-Schomer, M. D. et al. Film-based implants for supporting neuron–electrode integrated interfaces for the brain. Adv. Funct. Mater. 24, 1938–1948 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Richardson-Burns, S. M. et al. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 1539–1552 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bershadsky, A. D. & Balaban, N. Q. Geiger B. Adhesion-Dependent Cell Mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allani, P. K., Sum, T., Bhansali, S. G., Mukherjee, S. K. & Sonee, M. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons. Toxicol. Appl. Pharmacol. 196, 29–36 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Madl, C. M. & Heilshorn, S. C. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche. Annu. Rev. Biomed. Eng. 20, 21–47 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madl, C. M. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233–1242 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clegg, J. R., Adebowale, K., Zhao, Z. & Mitragotri, S. Hydrogels in the clinic: An update. Bioeng. Transl. Med. 9, e10680 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correa, S. et al. Translational applications of hydrogels. Chem. Rev. 121, 11385–11457 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • De Faveri, S. et al. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Front. Neuroeng. 7, 7 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Green, R. A. et al. Living electrodes: Tissue engineering the neural interface. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)) (2013).

  • Goding, J. et al. A living electrode construct for incorporation of cells into bionic devices. MRS Commun. 7, 487–495 (2017).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Aregueta-Robles, U. A., Martens, P. J., Poole-Warren, L. A. & Green, R. A. Tissue engineered hydrogels supporting 3D neural networks. Acta Biomater. 95, 269–284 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rochford, A. E. et al. Functional neurological restoration of amputated peripheral nerve using biohybrid regenerative bioelectronics. Sci. Adv. 9, https://doi.org/10.1126/sciadv.add8162 (2023).

  • Ahmed, B. et al. Implementation and testing of a biohybrid transition microelectrode array for neural recording and modulation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.08.552362 (2023).

  • Li, X. et al. Nanotransducers for wireless neuromodulation. Matter 4, 1484–1510 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhu, X., Wang, F., Zhao, Q. & Du, X. Adaptive interfacial materials and implants for visual restoration. Adv. Funct. Mater. 34, 2314575 (2024).

  • Onoe, H. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584–590 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Neal, D., Sakar, M. S., Ong, L.-L. S. & Harry Asada, H. Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding. Lab a Chip 14, 1907–1916 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sifringer, L. et al. An Implantable Biohybrid Neural Interface Toward Synaptic Deep Brain Stimulation. Adv. Funct. Mater. 2416557 https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202416557 (2025).

  • Peng, M. et al. A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling. Matter 8, 101901 (2025).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Filippi, M., Yasa, O., Kamm, R. D., Raman, R. & Katzschmann, R. K. Will microfluidics enable functionally integrated biohybrid robots? Proc. Natl. Acad. Sci. USA 119, e2200741119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, I. et al. Electrocatalytic on-site oxygenation for transplanted cell-based-therapies. Nat. Commun. 14, 7019 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 368, 993–1001 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mansouri, M. & Fussenegger, M. Electrogenetics: Bridging synthetic biology and electronics to remotely control the behavior of mammalian designer cells. Curr. Opin. Chem. Biol. 68, 102151 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivnay, J., Sheehan, P. E. & Veiseh, O. Are implantable, living pharmacies within reach? Science 386, 271–273 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnan, S. R. et al. A wireless, battery-free device enables oxygen generation and immune protection of therapeutic xenotransplants in vivo. Proc. Natl. Acad. Sci. USA 120, e2311707120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795–802 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Biesmans, H. et al. From synthetic vesicles to living cells: Anchoring conducting polymers to cell membrane. Sci. Adv. 10, eadr2882 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, A. et al. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. Sci. Adv. 9, eadi1870 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Conducting polymer films and bioelectrodes combining high adhesion and electro-mechanical self-healing. J. Mater. Chem. C 12, 5708–5717 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zheng, Z., Zhu, R., Peng, I., Xu, Z. & Jiang, Y. Wearable and implantable biosensors: mechanisms and applications in closed-loop therapeutic systems. J. Mater. Chem. B 12, 8577–8604 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X., Lei, B., Li, S. S., Chen, L. J. & Li, Q. Living cell‐laden hydrogels: Unleashing the future of responsive biohybrid systems. Respons. Mater. 1, e20230009 (2023).

    MATH 

    Google Scholar
     

  • Serruya, M. D. et al. Engineered axonal tracts as “living electrodes” for synaptic‐based modulation of neural circuitry. Adv. Funct. Mater. 28, 1701183 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cullen, D. K. et al. Microtissue engineered constructs with living axons for targeted nervous system reconstruction. Tissue Eng. Part A 18, 2280–2289 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Struzyna, L. A. et al. Anatomically inspired three-dimensional micro-tissue engineered neural networks for nervous system reconstruction, modulation, and modeling. J. Vis. Exp. https://doi.org/10.3791/55609 (2017).

  • Struzyna, L. A. et al. Tissue engineered nigrostriatal pathway for treatment of Parkinson’s disease. J. Tissue Eng. Regen. Med. 12, 1702–1716 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Prox, J. et al. Toward living neuroprosthetics: developing a biological brain pacemaker as a living neuromodulatory implant for improving parkinsonian symptoms. J. Neural Eng. 18, 046081 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dhobale, A. V. et al. Assessing functional connectivity across 3D tissue engineered axonal tracts using calcium fluorescence imaging. J. Neural Eng. 15, 056008 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, J. et al. Optogenetic stimulation of a cortical biohybrid implant guides goal directed behavior. Preprint at bioRxiv https://doi.org/10.1101/2024.11.22.624907 (2024).

  • Sampaio-Baptista, C. & Johansen-Berg, H. White matter plasticity in the adult brain. Neuron 96, 1239–1251 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Johnson, V. E., Stewart, W. & Smith, D. H. Axonal pathology in traumatic brain injury. Exp. Neurol. 246, 35–43 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Harris, J. P. et al. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain. J. Neural Eng. 13, 016019 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Struzyna, L. A. et al. Rebuilding brain circuitry with living micro-tissue engineered neural networks. Tissue Eng. Part A 21, 2744–2756 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Struzyna, L. A. et al. Axonal tract reconstruction using a tissue-engineered nigrostriatal pathway in a rat model of Parkinson’s disease. Int. J. Mol. Sci. 23, 13985 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gordián-Vélez, W. J. et al. Restoring lost nigrostriatal fibers in Parkinson’s disease based on clinically-inspired design criteria. Brain Res. Bull.5, 168–185 (2021).

    Article 

    Google Scholar
     

  • Cullen, D. K. et al. Bundled three-dimensional human axon tracts derived from brain organoids. iScience 21, 57–67 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Harris, J. P. et al. Emerging regenerative medicine and tissue engineering strategies for Parkinson’s disease. Npj Parkinson’s Disease 6, 4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bouthour, W. et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat. Rev. Neurol. 15, 343–352 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Limousin, P. & Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 15, 234–242 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Schuepbach, W. M. M. et al. Neurostimulation for Parkinson’s disease with early motor complications. New Engl. J. Med. 368, 610–622 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Follett, K. A. et al. Pallidal versus Subthalamic deep-brain stimulation for Parkinson’s disease. New Engl. J. Med. 362, 2077–2091 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gordián‐Vélez, W. J. et al. Dopaminergic axon tracts within a hyaluronic acid hydrogel encasement to restore the nigrostriatal pathway. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202402997 (2024).

  • Katiyar, K. S. et al. Tissue engineered axon tracts serve as living scaffolds to accelerate axonal regeneration and functional recovery following peripheral nerve injury in rats. Front. Bioeng. Biotechnol. 8, 492 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, D. H. et al. Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs. Sci. Adv. 8, eabm3291 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maggiore, J. C. et al. Tissue engineered axon-based “living scaffolds” promote survival of spinal cord motor neurons following peripheral nerve repair. J. Tissue Eng. Regen. Med. 14, 1892–1907 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Das, S. et al. Pre-innervated tissue-engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss. Commun. Biol. 3, 330 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, Y., Garg, R., Cohen-Karni, D. & Cohen-Karni, T. Neural modulation with photothermally active nanomaterials. Nat. Rev. Bioeng. 1, 193–207 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jiang S., Wu X., Rommelfanger N. J., Ou Z., Hong G. Shedding light on neurons: optical approaches for neuromodulation. Nat. Sci. Rev. 9, https://doi.org/10.1093/nsr/nwac007 (2022).

  • Li, Q. et al. Cyborg Organoids: Implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett. 19, 5781–5789 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Oricchio, E. et al. A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep. 8, 1677−1685 (2014).

  • Roth, B. L. DREADDs for Neuroscientists. Neuron 89, 683–694 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sun, J. et al. Living synthelectronics: A new Era for bioelectronics powered by synthetic biology. Adv. Mater. 36, 2400110 (2024).

    Article 
    CAS 

    Google Scholar
     

  • FDA US. Current Good Tissue Practice (CGTP) and additional requirements for manufacturers of human cells, tissues, and cellular and tissue-based products (HCT/Ps).). Center for Biologics Evaluation and Research (2011).

  • FDA US. Regulation of Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) – Small Entity Compliance Guide. Center for Biologics Evaluation and Research (2022).

  • FDA US. CFR – Code of Federal Regulations Title 21. Department of Health and Human Services (2018).

  • Shen, W. et al. Microfabricated intracortical extracellular matrix-microelectrodes for improving neural interfaces. Microsyst. Nanoeng. 4, 30 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Source link

    Share This Article
    Leave a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *