Chen, Y. et al. Flexible inorganic bioelectronics. Npj Flex. Electron. 4, 2 (2020).
Wang, S., Oh, J. Y., Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: An emerging paradigm. Acc. Chem. Res. 51, 1033â1045 (2018).
Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642â1667 (2019).
Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590â603 (2020).
Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148â160 (2019).
Mushtaq, F. et al. One hundred years of EEG for brain and behaviour research. Nat. Hum. Behav. 8, 1437â1443 (2024).
Hill, C. E. et al. Continuous EEG is associated with favorable hospitalization outcomes for critically ill patients. Neurology 92, e9âe18 (2019).
Kwon, S. et al. At-home wireless sleep monitoring patches for the clinical assessment of sleep quality and sleep apnea. Sci. Adv. 9, eadg9671 (2023).
Liang, W., Pei, H., Cai, Q., Wang, Y. & Scalp, E. E. G. epileptogenic zone recognition and localization based on long-term recurrent convolutional network. Neurocomputing 396, 569â576 (2020).
Anjum, M. F. et al. Resting-state EEG measures cognitive impairment in Parkinsonâs disease. Npj Parkinsonâs Dis. 10, 6 (2024).
Wolthuis, N. et al. Distinct slow-wave activity patterns in resting-state electroencephalography and their relation to language functioning in low-grade glioma and meningioma patients. Front. Hum. Neurosci. 16, 748128 (2022).
Waldert, S. Invasive vs. non-invasive neuronal signals for brain-machine interfaces: Will one prevail? Front. Neurosci. 10, 295 (2016).
Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication via handwriting. Nature 593, 249â254 (2021).
Sheth, S. A. et al. Deep brain stimulation for depression informed by intracranial recordings. Biol. Psychiatry 92, 246â251 (2022).
Kennedy, P. R. & Bakay, R. A. Restoration of neural output from a paralyzed patient by a direct brain connection. Neuroreport 9, 1707â1711 (1998).
Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164â171 (2006).
Patrick-Krueger, K. M., Burkhart, I. & Contreras-Vidal, J. L. The state of clinical trials of implantable brainâcomputer interfaces. Nat. Rev. Bioeng. 3, 50â67 (2024).
Guo, J. et al. Seizure outcome after intraoperative rlectrocorticography-tailored epilepsy surgery. Neurology 102, e209430 (2024).
Dasgupta, D., Miserocchi, A., McEvoy, A. W. & Duncan, J. S. Previous, current, and future stereotactic EEG techniques for localising epileptic foci. Expert Rev. Med. Devices 19, 571â580 (2022).
Bernabei, J. M. et al. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 146, 2248â2258 (2023).
Skarpaas, T. L., Jarosiewicz, B. & Morrell, M. J. Brain-responsive neurostimulation for epilepsy (RNS® System). Epilepsy Res. 153, 68â70 (2019).
Roa, J. A. et al. Responsive neurostimulation of the thalamus for the treatment of refractory epilepsy. Front. Hum. Neurosci. 16, 926337 (2022).
Metzger, S. L. et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature 620, 1037â1046 (2023).
Duraivel, S. et al. High-resolution neural recordings improve the accuracy of speech decoding. Nat. Commun. 14, 6938 (2023).
Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. New Engl. J. Med. 385, 217â227 (2021).
Lorach, H. et al. Walking naturally after spinal cord injury using a brainâspine interface. Nature 618, 126â133 (2023).
Flesher, S. N. et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372, 831â836 (2021).
Fifer, M. S. et al. Intracortical somatosensory stimulation to elicit fingertip sensations in an individual with spinal Cord Injury. Neurology 98, e679âe687 (2022).
Adam, E. M., Brown, E. N., Kopell, N. & McCarthy, M. M. Deep brain stimulation in the subthalamic nucleus for Parkinsonâs disease can restore dynamics of striatal networks. Proc. Natl. Acad. Sci. USA 119, e2120808119 (2022).
Oehrn, C. R. et al. Chronic adaptive deep brain stimulation versus conventional stimulation in Parkinsonâs disease: a blinded randomized feasibility trial. Nat. Med. 30, 3345â3356 (2024).
Nho, Y. H. et al. Responsive deep brain stimulation guided by ventral striatal electrophysiology of obsession durably ameliorates compulsion. Neuron 112, 73â83 (2024).
Schalk, G. et al. Translation of neurotechnologies. Nat. Rev. Bioeng. 2, 637â652 (2024).
Qi, Y., Kang, S.-K. & Fang, H. Advanced materials for implantable neuroelectronics. MRS Bull. 48, 475â483 (2023).
Tang, X., Shen, H., Zhao, S., Li, N. & Liu, J. Flexible brainâcomputer interfaces. Nat. Electron. 6, 109â118 (2023).
Zhang, E. N. et al. Mechanically matched silicone brain implants reduce brain foreign body response. Adv. Mater. Technol. 6, 2000909 (2021).
Apollo, N. V. et al. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. J. Neural Eng. 17, 041002 (2020).
Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1â18 (2005).
Adewole, D. O., Serruya, M. D., Wolf, J. A. & Cullen, D. K. Bioactive neuroelectronic interfaces. Front. Neurosci. 13, 269 (2019).
Ni, Y. et al. Macrophages modulate stiffness-related foreign body responses through plasma membrane deformation. Proc. Natl. Acad. Sci. USA 120, e2213837120 (2023).
Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862â877 (2017).
Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).
Carnicer-Lombarte, A., Chen, S.-T., Malliaras, G. G. & Barone, D. G. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).
Kolarcik, C. L. et al. Elastomeric and soft conducting microwires for implantable neural interfaces. Soft Matter 11, 4847â4861 (2015).
Lee, H., Bellamkonda, R. V., Sun, W. & Levenston, M. E. Biomechanical analysis of silicon microelectrode-induced strain in the brain. J. Neural Eng. 2, 81 (2005).
Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629â636 (2015).
Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986â994 (2012).
Zhao, S. et al. Tracking neural activity from the same cells during the entire adult life of mice. Nat. Neurosci. 26, 696â710 (2023).
Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).
Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510â517 (2019).
Bi, L. et al. Soft, multifunctional MXene-coated fiber microelectrodes for biointerfacing. ACS Nano 18, 23217â23231 (2024).
Vitale, F., Summerson, S. R., Aazhang, B., Kemere, C. & Pasquali, M. Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano 9, 4465â4474 (2015).
Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511â517 (2010).
Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310â315 (2015).
Driscoll, N. et al. Two-dimensional Ti3C2 MXene for High-Resolution Neural Interfaces. ACS Nano 12, 10419â10429 (2018).
Driscoll, N. et al. Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. Commun. Biol. 4, 136 (2021).
Tybrandt, K. et al. High-density stretchable electrode grids for chronic neural recording. Adv. Mater. 30, 1706520 (2018).
Rao, Z. et al. All-polymer based stretchable rubbery electronics and sensors. Adv. Funct. Mater.2, 2111232 (2022).
Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019â1029 (2021).
Zhou, T. et al. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895â902 (2023).
Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159â163 (2015).
Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94â101 (2022).
Seymour, J. P. & Kipke, D. R. Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28, 3594â3607 (2007).
Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scarâfree neural integration. Sci. Adv. 3, e1601966 (2017).
Portillo-Lara, R., Goding, J. A. & Green, R. A. Adaptive biomimicry: design of neural interfaces with enhanced biointegration. Curr. Opin. Biotechnol. 72, 62â68 (2021).
Vitale, F. et al. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays. PLOS ONE 13, e0206137 (2018).
Rochford, A. E., Carnicer-Lombarte, A., Curto, V. F., Malliaras, G. G. & Barone, D. G. When bio meets technology: Biohybrid neural interfaces. Adv. Mater. 32, 1903182 (2020).
Boulingre, M., Portillo-Lara, R. & Green, R. A. Biohybrid neural interfaces: improving the biological integration of neural implants. Chem. Commun. 59, 14745â14758 (2023).
Carnicer-Lombarte, A., Malliaras, G. G. & Barone, D. G. The future of biohybrid regenerative Bioelectronics. Adv. Mater.n/a, 2408308 (2024).
Chen, C., Bai, X., Ding, Y. & Lee, I.-S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 23, 25 (2019).
Adewole, D. O. et al. Development of optically controlled âliving electrodesâ with long-projecting axon tracts for a synaptic brain-machine interface. Sci. Adv. 7, eaay5347 (2021).
Spencer, K. C. et al. Characterization of mechanically matched hydrogel coatings to improve the biocompatibility of neural implants. Sci. Rep. 7, 1952 (2017).
Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).
Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411â1417 (2022).
Oxley, T. J. et al. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J. NeuroInterv. Surg. 13, 102â108 (2021).
Musk, E. Neuralink. An integrated brain-machine interface platform with thousands of channels. Preprint at bioRxiv https://preprints.jmir.org/preprint/16194 (2019).
Hettick, M. et al. The layer 7 cortical interface: A scalable and minimally invasive brainâcomputer interface platform. Preprint at bioRxiv https://doi.org/10.1101/2022.01.02.474656 (2022).
Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379â385 (2016).
Mariello, M., Kim, K., Wu, K., Lacour, S. P. & Leterrier, Y. Recent advances in encapsulation of flexible bioelectronic implants: Materials, tchnologies, and characterization methods. Adv. Mater. 34, 2201129 (2022).
Zhang, A. et al. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306â312 (2023).
Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875â882 (2016).
Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277â284 (2015).
Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612â619 (2017).
Tyler, W. J. The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867â878 (2012).
Ramezani, M. et al. High-density transparent graphene arrays for predicting cellular calcium activity at depth from surface potential recordings. Nat. Nanotechnol. 19, 504â513 (2024).
Castagnola, E., Garg, R., Rastogi, S. K., Cohen-Karni, T. & Cui, X. T. 3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. Biosens. Bioelectron. 191, 113440 (2021).
Viana, D. et al. Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation. Nat. Nanotechnol. 19, 514â523 (2024).
Garg, R., Roman, D. S., Wang, Y., Cohen-Karni, D. & Cohen-Karni, T. Graphene nanostructures for inputâoutput bioelectronics. Biophys. Rev. 2, 041304 (2021).
Driscoll, N. et al. Fabrication of Ti3C2 MXene microelectrode arrays for in vivo neural recording. J. Vis. Exp. https://doi.org/10.3791/60741 (2020).
Wu, Y. et al. Orbit symmetry breaking in MXene implements enhanced soft bioelectronic implants. Sci. Adv. 10, eadp8866 (2024).
Zhang, H. et al. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite. ACS Nano 7, 7619â7629 (2013).
Ganji, M. et al. Selective formation of porous Pt nanorods for highly electrochemically efficient neural electrode interfaces. Nano Lett. 19, 6244â6254 (2019).
Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionicâelectronic conductors. Nat. Mater. 19, 13â26 (2020).
Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).
Aregueta-Robles, U. A., Woolley, A. J., Poole-Warren, L. A., Lovell, N. H. & Green, R. A. Organic electrode coatings for next-generation neural interfaces. Front. Neuroeng. 7, 15 (2014).
Donahue, M. J. et al. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R Reports 140, 100546 (2020).
Spyropoulos G. D., Gelinas J. N., Khodagholy D. Internal ion-gated organic electrochemical transistor: A building block for integrated bioelectronics. Sci. Adv. 5, eaau7378 (2019).
Uguz, I. et al. Complementary integration of organic electrochemical transistors for front-end amplifier circuits of flexible neural implants. Sci. Adv. 10, eadi9710 (2024).
Tybrandt, K., Kollipara, S. B. & Berggren, M. Organic electrochemical transistors for signal amplification in fast scan cyclic voltammetry. Sensors Actuat. B Chem. 195, 651â656 (2014).
Saleh, A., Koklu, A., Uguz, I., Pappa, A.-M. & Inal, S. Bioelectronic interfaces of organic electrochemical transistors. Nat. Rev. Bioeng. 2, 559â574 (2024).
Abidian, M. R., Corey, J. M., Kipke, D. R. & Martin, D. C. Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural Attachment, and Neurite Outgrowth of Neural Electrodes. Small 6, 421â429 (2010).
Zhou, T. et al. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc. Natl. Acad. Sci. USA 114, 5894â5899 (2017).
Skousen, J. L. et al. in Progress in Brain Research (eds Schouenborg, J., Garwicz, M., Danielsen, N.). (Elsevier, 2011).
Le Floch, P. et al. Stretchable mesh nanoelectronics for 3D single-cell chronic electrophysiology from developing brain organoids. Adv. Mater. 34, e2106829 (2022).
Ho, T.-C. et al. Hydrogels: Properties and applications in biomedicine. Molecules 27, 2902 (2022).
Peppas, N. A. & Hoffman, A. S. in Biomaterials Science. (Elsevier, 2020).
Niu, J. et al. Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nat. Commun. 5, 3313 (2014).
Deng, Y. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019).
Kailasa, S. K., Joshi, D. J., Kateshiya, M. R., Koduru, J. R. & Malek, N. I. Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Mater. Today Chem. 23, 100746 (2022).
Hui, Y. et al. Three-dimensional printing of soft hydrogel electronics. Nat. Electron. 5, 893â903 (2022).
Ohm, Y. et al. An electrically conductive silverâpolyacrylamideâalginate hydrogel composite for soft electronics. Nat. Electron. 4, 185â192 (2021).
Ren, X. et al. Highly conductive PPy-PEDOT:PSS hybrid hydrogel with superior biocompatibility for bioelectronics application. ACS Appl. Mater. Interfaces 13, 25374â25382 (2021).
Yang, T. et al. Conductive polymer hydrogels crosslinked by electrostatic interaction with PEDOT:PSS dopant for bioelectronics application. Chem. Eng. J. 429, 132430 (2022).
He, W. & Bellamkonda, R. V. Nanoscale neuro-integrative coatings for neural implants. Biomaterials 26, 2983â2990 (2005).
Eles, J. R. et al. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials 113, 279â292 (2017).
He, W., McConnell, G. C. & Bellamkonda, R. V. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J. Neural Eng. 3, 316 (2006).
Zhang A., Zwang T. J. & Lieber C. M. Biochemically functionalized probes for cell-typeâspecific targeting and recording in the brain. Sci. Adv. 9, https://doi.org/10.1126/sciadv.adk1050 (2023).
Zhu, B. et al. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 5, 4523 (2014).
Oakes, R. S., Polei, M. D., Skousen, J. L. & Tresco, P. A. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex. Biomaterials 154, 1â11 (2018).
Golabchi, A., Woeppel, K. M., Li, X., Lagenaur, C. F. & Cui, X. T. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain. Biosens. Bioelectron. 155, 112096 (2020).
Lee, J. Y., Khaing, Z. Z., Siegel, J. J. & Schmidt, C. E. Surface modification of neural electrodes with a pyrrole-hyaluronic acid conjugate to attenuate reactive astrogliosis in vivo. RSC Adv. 5, 39228â39231 (2015).
Winter, J. O., Cogan, S. F. & Rizzo, J. F. III Neurotrophin-eluting hydrogel coatings for neural stimulating electrodes. J. Biomed. Mater. Res. Part B Appl. Biomater. 81B, 551â563 (2007).
Zhong, Y. & Bellamkonda, R. V. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 1148, 15â27 (2007).
Boehler, C. et al. Actively controlled release of Dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 129, 176â187 (2017).
Zhong, Y. & Bellamkonda, R. V. Controlled release of anti-inflammatory agent α-MSH from neural implants. J. Control.Release 106, 309â318 (2005).
Liu, X., Yue, Z., Higgins, M. J. & Wallace, G. G. Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials 32, 7309â7317 (2011).
Lee, J.-W., Serna, F. & Schmidt, C. E. Carboxy-endcapped conductive polypyrrole:â Biomimetic conducting polymer for cell scaffolds and electrodes. Langmuir 22, 9816â9819 (2006).
Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275â309 (2008).
Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679â685 (2014).
Harris, K. D., Quiroga, R. Q., Freeman, J. & Smith, S. L. Improving data quality in neuronal population recordings. Nat. Neurosci. 19, 1165â1174 (2016).
Boehler, C., Carli, S., Fadiga, L., Stieglitz, T. & Asplund, M. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 15, 3557â3578 (2020).
Garg, R. et al. Graphene and poly (3, 4-ethylenedioxythiophene)âpolystyrene sulfonate hybrid nanostructures for input/output bioelectronics. ACS Appl. Nano Mater. 6, 8495â8505 (2023).
Chen, J., Liu, F., Abdiryim, T. & Liu, X. An overview of conductive composite hydrogels for flexible electronic devices. Adv. Compos. Hybrid Mater. 7, 35 (2024).
Zhang, Y., Tan, Y., Lao, J., Gao, H. & Yu, J. Hydrogels for flexible electronics. ACS Nano 17, 9681â9693 (2023).
Shi, D., Dhawan, V. & Cui, X. T. Bio-integrative design of the neural tissue-device interface. Curr. Opin. Biotechnol. 72, 54â61 (2021).
Kozai, T. D. Y., Jaquins-Gerstl, A. S., Vazquez, A. L., Michael, A. C. & Cui, X. T. Brain tissue Responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6, 48â67 (2015).
Du, X. et al. Photothermally triggered shape-adaptable 3D flexible electronics. Adv. Mater. Technol. 2, 1700120 (2017).
Wang, J. et al. Self-unfolding flexible microelectrode arrays based on shape memory polymers. Adv. Mater. Technol. 4, 1900566 (2019).
Yu, M. et al. Self-closing stretchable cuff electrodes for peripheral nerve stimulation and electromyographic signal recording. ACS Appl. Mater. Interfaces 15, 7663â7672 (2023).
Yi, J. et al. Water-responsive supercontractile polymer films for bioelectronic interfaces. Nature 624, 295â302 (2023).
Chen, H., Wang, L., Lu, Y. & Du, X. Bioinspired microcone-array-based living biointerfaces: enhancing the anti-inflammatory effect and neuronal network formation. Microsyst. Nanoeng. 6, 58 (2020).
Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782â791 (2016).
Bae, J.-Y. et al. A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing. Nat. Electron. 7, 815â828 (2024).
Kennedy, P. R. The cone electrode: a long-term electrode that records from neurites grown onto its recording surface. J. Neurosci. Methods 29, 181â193 (1989).
Gearing, M. & Kennedy, P. Histological confirmation of myelinated neural filaments within the tip of the neurotrophic electrode after a decade of neural recordings. Front. Hum. Neurosci. 14, 111 (2020).
Stieglitz, T., Ruf, H. H., Gross, M., Schuettler, M. & Meyer, J. U. A biohybrid system to interface peripheral nerves after traumatic lesions: design of a high channel sieve electrode. Biosens. Bioelectron. 17, 685â696 (2002).
Cullen, D. K. et al. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers. J. Neural Eng. 5, 374 (2008).
Kameswaran, N. et al. A novel neuroprosthetic interface with the peripheral nervous system using artificially engineered axonal tracts. Neurol. Res. 30, 1063â1067 (2008).
Purcell, E. K., Seymour, J. P., Yandamuri, S. & Kipke, D. R. In vivo evaluation of a neural stem cell-seeded prosthesis. J. Neural Eng. 6, 026005 (2009).
Azemi, E., Gobbel, G. T. & Cui, X. T. Seeding neural progenitor cells on silicon-based neural probes. J. Neurosurg. 113, 673â681 (2010).
Okita K., Kato-Negishi M., Sato K., Onoe H. & Takeuchi S. A neurospheroid cultured on the tip of a fexible microelectrode for cortical microstimulation. In 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS). Chemical and Biological Microsystems Society (2012).
Okita K., Kato-Negishi M., Onoe H. & Takeuchi S. Neurospheroid array on a flexible substrate for cortical microstimulation. In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (2013).
Tang-Schomer, M. D. et al. Film-based implants for supporting neuronâelectrode integrated interfaces for the brain. Adv. Funct. Mater. 24, 1938â1948 (2014).
Richardson-Burns, S. M. et al. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28, 1539â1552 (2007).
Bershadsky, A. D. & Balaban, N. Q. Geiger B. Adhesion-Dependent Cell Mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677â695 (2003).
Allani, P. K., Sum, T., Bhansali, S. G., Mukherjee, S. K. & Sonee, M. A comparative study of the effect of oxidative stress on the cytoskeleton in human cortical neurons. Toxicol. Appl. Pharmacol. 196, 29â36 (2004).
Tibbitt, M. W. & Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655â663 (2009).
Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518â526 (2010).
Madl, C. M. & Heilshorn, S. C. Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche. Annu. Rev. Biomed. Eng. 20, 21â47 (2018).
Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535â546 (2020).
Madl, C. M. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233â1242 (2017).
Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59â63 (2009).
Clegg, J. R., Adebowale, K., Zhao, Z. & Mitragotri, S. Hydrogels in the clinic: An update. Bioeng. Transl. Med. 9, e10680 (2024).
Correa, S. et al. Translational applications of hydrogels. Chem. Rev. 121, 11385â11457 (2021).
De Faveri, S. et al. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Front. Neuroeng. 7, 7 (2014).
Green, R. A. et al. Living electrodes: Tissue engineering the neural interface. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)) (2013).
Goding, J. et al. A living electrode construct for incorporation of cells into bionic devices. MRS Commun. 7, 487â495 (2017).
Aregueta-Robles, U. A., Martens, P. J., Poole-Warren, L. A. & Green, R. A. Tissue engineered hydrogels supporting 3D neural networks. Acta Biomater. 95, 269â284 (2019).
Rochford, A. E. et al. Functional neurological restoration of amputated peripheral nerve using biohybrid regenerative bioelectronics. Sci. Adv. 9, https://doi.org/10.1126/sciadv.add8162 (2023).
Ahmed, B. et al. Implementation and testing of a biohybrid transition microelectrode array for neural recording and modulation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.08.552362 (2023).
Li, X. et al. Nanotransducers for wireless neuromodulation. Matter 4, 1484â1510 (2021).
Zhu, X., Wang, F., Zhao, Q. & Du, X. Adaptive interfacial materials and implants for visual restoration. Adv. Funct. Mater. 34, 2314575 (2024).
Onoe, H. et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat. Mater. 12, 584â590 (2013).
Neal, D., Sakar, M. S., Ong, L.-L. S. & Harry Asada, H. Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding. Lab a Chip 14, 1907â1916 (2014).
Sifringer, L. et al. An Implantable Biohybrid Neural Interface Toward Synaptic Deep Brain Stimulation. Adv. Funct. Mater. 2416557 https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202416557 (2025).
Peng, M. et al. A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling. Matter 8, 101901 (2025).
Filippi, M., Yasa, O., Kamm, R. D., Raman, R. & Katzschmann, R. K. Will microfluidics enable functionally integrated biohybrid robots? Proc. Natl. Acad. Sci. USA 119, e2200741119 (2022).
Lee, I. et al. Electrocatalytic on-site oxygenation for transplanted cell-based-therapies. Nat. Commun. 14, 7019 (2023).
Krawczyk, K. et al. Electrogenetic cellular insulin release for real-time glycemic control in type 1 diabetic mice. Science 368, 993â1001 (2020).
Mansouri, M. & Fussenegger, M. Electrogenetics: Bridging synthetic biology and electronics to remotely control the behavior of mammalian designer cells. Curr. Opin. Chem. Biol. 68, 102151 (2022).
Rivnay, J., Sheehan, P. E. & Veiseh, O. Are implantable, living pharmacies within reach? Science 386, 271â273 (2024).
Krishnan, S. R. et al. A wireless, battery-free device enables oxygen generation and immune protection of therapeutic xenotransplants in vivo. Proc. Natl. Acad. Sci. USA 120, e2311707120 (2023).
Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795â802 (2023).
Biesmans, H. et al. From synthetic vesicles to living cells: Anchoring conducting polymers to cell membrane. Sci. Adv. 10, eadr2882 (2024).
Zhang, A. et al. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. Sci. Adv. 9, eadi1870 (2023).
Zhou, X. et al. Conducting polymer films and bioelectrodes combining high adhesion and electro-mechanical self-healing. J. Mater. Chem. C 12, 5708â5717 (2024).
Zheng, Z., Zhu, R., Peng, I., Xu, Z. & Jiang, Y. Wearable and implantable biosensors: mechanisms and applications in closed-loop therapeutic systems. J. Mater. Chem. B 12, 8577â8604 (2024).
Hu, X., Lei, B., Li, S. S., Chen, L. J. & Li, Q. Living cellâladen hydrogels: Unleashing the future of responsive biohybrid systems. Respons. Mater. 1, e20230009 (2023).
Serruya, M. D. et al. Engineered axonal tracts as âliving electrodesâ for synapticâbased modulation of neural circuitry. Adv. Funct. Mater. 28, 1701183 (2018).
Cullen, D. K. et al. Microtissue engineered constructs with living axons for targeted nervous system reconstruction. Tissue Eng. Part A 18, 2280â2289 (2012).
Struzyna, L. A. et al. Anatomically inspired three-dimensional micro-tissue engineered neural networks for nervous system reconstruction, modulation, and modeling. J. Vis. Exp. https://doi.org/10.3791/55609 (2017).
Struzyna, L. A. et al. Tissue engineered nigrostriatal pathway for treatment of Parkinsonâs disease. J. Tissue Eng. Regen. Med. 12, 1702â1716 (2018).
Prox, J. et al. Toward living neuroprosthetics: developing a biological brain pacemaker as a living neuromodulatory implant for improving parkinsonian symptoms. J. Neural Eng. 18, 046081 (2021).
Dhobale, A. V. et al. Assessing functional connectivity across 3D tissue engineered axonal tracts using calcium fluorescence imaging. J. Neural Eng. 15, 056008 (2018).
Brown, J. et al. Optogenetic stimulation of a cortical biohybrid implant guides goal directed behavior. Preprint at bioRxiv https://doi.org/10.1101/2024.11.22.624907 (2024).
Sampaio-Baptista, C. & Johansen-Berg, H. White matter plasticity in the adult brain. Neuron 96, 1239â1251 (2017).
Johnson, V. E., Stewart, W. & Smith, D. H. Axonal pathology in traumatic brain injury. Exp. Neurol. 246, 35â43 (2013).
Harris, J. P. et al. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain. J. Neural Eng. 13, 016019 (2016).
Struzyna, L. A. et al. Rebuilding brain circuitry with living micro-tissue engineered neural networks. Tissue Eng. Part A 21, 2744â2756 (2015).
Struzyna, L. A. et al. Axonal tract reconstruction using a tissue-engineered nigrostriatal pathway in a rat model of Parkinsonâs disease. Int. J. Mol. Sci. 23, 13985 (2022).
Gordián-Vélez, W. J. et al. Restoring lost nigrostriatal fibers in Parkinsonâs disease based on clinically-inspired design criteria. Brain Res. Bull.5, 168â185 (2021).
Cullen, D. K. et al. Bundled three-dimensional human axon tracts derived from brain organoids. iScience 21, 57â67 (2019).
Harris, J. P. et al. Emerging regenerative medicine and tissue engineering strategies for Parkinsonâs disease. Npj Parkinsonâs Disease 6, 4 (2020).
Bouthour, W. et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond. Nat. Rev. Neurol. 15, 343â352 (2019).
Limousin, P. & Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 15, 234â242 (2019).
Schuepbach, W. M. M. et al. Neurostimulation for Parkinsonâs disease with early motor complications. New Engl. J. Med. 368, 610â622 (2013).
Follett, K. A. et al. Pallidal versus Subthalamic deep-brain stimulation for Parkinsonâs disease. New Engl. J. Med. 362, 2077â2091 (2010).
GordiánâVélez, W. J. et al. Dopaminergic axon tracts within a hyaluronic acid hydrogel encasement to restore the nigrostriatal pathway. Adv. Healthc. Mater. https://doi.org/10.1002/adhm.202402997 (2024).
Katiyar, K. S. et al. Tissue engineered axon tracts serve as living scaffolds to accelerate axonal regeneration and functional recovery following peripheral nerve injury in rats. Front. Bioeng. Biotechnol. 8, 492 (2020).
Smith, D. H. et al. Tissue-engineered grafts exploit axon-facilitated axon regeneration and pathway protection to enable recovery after 5-cm nerve defects in pigs. Sci. Adv. 8, eabm3291 (2022).
Maggiore, J. C. et al. Tissue engineered axon-based âliving scaffoldsâ promote survival of spinal cord motor neurons following peripheral nerve repair. J. Tissue Eng. Regen. Med. 14, 1892â1907 (2020).
Das, S. et al. Pre-innervated tissue-engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss. Commun. Biol. 3, 330 (2020).
Wang, Y., Garg, R., Cohen-Karni, D. & Cohen-Karni, T. Neural modulation with photothermally active nanomaterials. Nat. Rev. Bioeng. 1, 193â207 (2023).
Jiang S., Wu X., Rommelfanger N. J., Ou Z., Hong G. Shedding light on neurons: optical approaches for neuromodulation. Nat. Sci. Rev. 9, https://doi.org/10.1093/nsr/nwac007 (2022).
Li, Q. et al. Cyborg Organoids: Implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett. 19, 5781â5789 (2019).
Oricchio, E. et al. A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep. 8, 1677â1685 (2014).
Roth, B. L. DREADDs for Neuroscientists. Neuron 89, 683â694 (2016).
Sun, J. et al. Living synthelectronics: A new Era for bioelectronics powered by synthetic biology. Adv. Mater. 36, 2400110 (2024).
FDA US. Current Good Tissue Practice (CGTP) and additional requirements for manufacturers of human cells, tissues, and cellular and tissue-based products (HCT/Ps).). Center for Biologics Evaluation and Research (2011).
FDA US. Regulation of Human Cells, Tissues, and Cellular and Tissue-Based Products (HCT/Ps) – Small Entity Compliance Guide. Center for Biologics Evaluation and Research (2022).
FDA US. CFR – Code of Federal Regulations Title 21. Department of Health and Human Services (2018).
Shen, W. et al. Microfabricated intracortical extracellular matrix-microelectrodes for improving neural interfaces. Microsyst. Nanoeng. 4, 30 (2018).