Shaikh, F. K. & Zeadally, S. Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sust. Energ. Rev. 55, 1041â1054 (2016).
Shaikh, F. K., Zeadally, S. & Exposito, E. Enabling technologies for green Internet of Things. IEEE Syst. J. 11, 983â994 (2015).
Bito, J., Kim, S., Tentzeris, M. & Nikolaou, S. Ambient energy harvesting from 2-way talk-radio signals for âsmartâ meter and display applications. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) 1353â1354 (IEEE, 2014).
Fang, B. et al. Experimental demonstration of spintronic broadband microwave detectors and their capability for powering nanodevices. Phys. Rev. Appl. 11, 014022 (2019).
Koohestani, M., Tissier, J. & Latrach, M. A miniaturized printed rectenna for wireless RF energy harvesting around 2.45âGHz. AEU Int. J. Electron. 127, 153478 (2020).
Olgun, U., Chen, C.-C. & Volakis, J. L. Wireless power harvesting with planar rectennas for 2.45âGHz RFIDs. In 2010 URSI International Symposium on Electromagnetic Theory 329â331 (IEEE, 2010).
Sharma, R. et al. Electrically connected spin-torque oscillators array for 2.4âGHz WiFi band transmission and energy harvesting. Nat. Commun. 12, 2924 (2021).
Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y. C. & Dickey, M. D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 33, 2004832 (2021).
Iqbal, N., Masood, M., Nasir, A. A. & Qureshi, K. K. Review of contemporary energy harvesting techniques and their feasibility in wireless geophones. Int. J. Energy Res. 46, 5703â5730 (2022).
Tran, L.-G., Cha, H.-K. & Park, W.-T. RF power harvesting: a review on designing methodologies and applications. Micro Nano Syst. Lett. 5, 14 (2017).
IEEE Computer Society LAN/MAN Standards Committee. IEEE Standard for Information TechnologyâTelecommunications and Information Exchange between SystemsâLocal and Metropolitan Area Networks-Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. in IEEE Std 802.11 (IEEE, 2007). https://doi.org/10.1109/IEEESTD.2007.373646
Hemour, S. & Wu, K. Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102, 1667â1691 (2014).
Hemour, S. et al. Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans. Microw. Theory Techn. 62, 965â976 (2014).
Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368â372 (2019).
Strohm, K. M., Buechler, J. & Kasper, E. SIMMWIC rectennas on high-resistivity silicon and CMOS compatibility. IEEE Trans. Microw. Theory Techn. 46, 669â676 (1998).
Suh, Y.-H. & Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Techn. 50, 1784â1789 (2002).
Lorenz, C. H. P. et al. Breaking the efficiency barrier for ambient microwave power harvesting with heterojunction backward tunnel diodes. IEEE Trans. Microw. Theory Techn. 63, 4544â4555 (2015).
Cansiz, M., Altinel, D. & Kurt, G. K. Efficiency in RF energy harvesting systems: a comprehensive review. Energy 174, 292â309 (2019).
Assogba, O., Mbodji, A. K. & Diallo, A. K. Efficiency in RF energy harvesting systems: a comprehensive review. In 2020 IEEE International Conference on Natural and Engineering Sciences for Sahelâs Sustainable DevelopmentâImpact of Big Data Application on Society and Environment (IBASE-BF) 1â10 (IEEE, 2020).
Chen, Y.-S. & Chiu, C.-W. Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting. IEEE Trans. Antennas Propag. 65, 2305â2317 (2017).
Kim, J. & Jeong, J. Design of high efficiency rectifier at 2.45âGHz using parasitic canceling circuit. Microw. Opt. Technol. Lett. 55, 608â611 (2013).
Mbombolo, S. E. F. & Park, C. W. An improved detector topology for a rectenna. In 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications 23â26 (IEEE, 2011).
Olgun, U., Chen, C.-C. & Volakis, J. L. Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wireless Propag. Lett. 10, 262â265 (2011).
Shi, Y. et al. An efficient fractal rectenna for RF energy harvest at 2.45âGHz ISM band. Int. J. RF Microw. 28, e21424 (2018).
Wang, D. & Negra, R. Design of a rectifier for 2.45âGHz wireless power transmission. In 8th Conference on Ph.D. Research in Microelectronics & Electronics (PRIME 2012) 1â4 (VDE, 2012).
Valenta, C. R. Fundamental limitations for Schottky diode RF energy harvesting. In 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA) 188â193 (IEEE, 2015).
Miwa, S. et al. Highly sensitive nanoscale spin-torque diode. Nat. Mater. 13, 50â56 (2014).
Valenta, C. R. & Durgin, G. D. Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15, 108â120 (2014).
Vera, G. A., Georgiadis, A., Collado, A. & Via, S. Design of a 2.45âGHz rectenna for electromagnetic (EM) energy scavenging. In 2010 IEEE Radio and Wireless Symposium (RWS) 61â64 (IEEE, 2010).
Assimonis, S. D., Fusco, V., Georgiadis, A. & Samaras, T. Efficient and sensitive electrically small rectenna for ultra-low power RF energy harvesting. Sci. Rep. 8, 15038 (2018).
Adami, S.-E. et al. A flexible 2.45-GHz power harvesting wristband with net system output from â24.3âdBm of RF power. IEEE Trans. Microw. Theory Techn. 66, 380â395 (2017).
Song, C. et al. A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans. Antennas Propag. 63, 3486â3495 (2015).
Shen, S., Zhang, Y., Chiu, C.-Y. & Murch, R. A triple-band high-gain multibeam ambient RF energy harvesting system utilizing hybrid combining. IEEE Trans. Ind. Electron. 67, 9215â9226 (2019).
P21XX Powerharvester Chipset Reference Design Evaluation Board (Powercast Corporation, 2018); https://powercastco.com/wp-content/uploads/2021/06/P21XXCSR-EVB-Datasheet-v2.1-1.pdf
Finocchio, G. et al. Perspectives on spintronic diodes. Appl. Phys. Lett. 118, 160502 (2021).
Tulapurkar, A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339â342 (2005).
Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230â234 (2018).
Fang, B. et al. Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat. Commun. 7, 11259 (2016).
Zhang, L. et al. Ultrahigh detection sensitivity exceeding 105âV/W in spin-torque diode. Appl. Phys. Lett. 113, 102401 (2018).
Jenkins, A. et al. Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme. Nat. Nanotechnol. 11, 360â364 (2016).
Tsunegi, S. et al. Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction. Appl. Phys. Express 11, 053001 (2018).
Goto, M. et al. Uncooled sub-GHz spin bolometer driven by auto-oscillation. Nat. Commun. 12, 536 (2021).
Leroux, N. et al. Radio-frequency multiply-and-accumulate operations with spintronic synapses. Phys. Rev. Appl. 15, 034067 (2021).
Zhu, J. et al. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012).
Zero-Bias Schottky Diode Detectors (Herotek, Inc., 2022); http://www.herotek.com/datasheets/pdf/Zero-Bias_Schottky_Diode_Detectors_100kHz-50Ghz.pdf
Nozaki, T. et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat. Phys. 8, 491â496 (2012).
Scheike, T., Wen, Z., Sukegawa, H. & Mitani, S. 631% room temperature tunnel magnetoresistance with large oscillation effect in CoFe/MgO/CoFe(001) junctions. Appl. Phys. Lett. 122, 112404 (2023).
Nozaki, T. et al. Highly efficient voltage control of spin and enhanced interfacial perpendicular magnetic anisotropy in iridium-doped Fe/MgO magnetic tunnel junctions. NPG Asia Mater. 9, e451 (2017).
Zhang, L. et al. Enhanced broad-band radio frequency detection in nanoscale magnetic tunnel junction by interface engineering. ACS Appl. Mater. Interfaces 11, 29382â29387 (2019).
Nitzan, S. H. et al. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5, 9036 (2015).
Rhodes, J.Jr. Parametric self-excitation of a belt into transverse vibration. J. Appl. Mech. 37, 1055â1060 (1970).
Tomasello, R. et al. Low-frequency nonresonant rectification in spin diodes. Phys. Rev. Appl. 14, 024043 (2020).
Sadagopan, K. R., Kang, J., Ramadass, Y. & Natarajan, A. A 960âpW co-integrated-antenna wireless energy harvester for WiFi backchannel wireless powering. In 2018 IEEE International Solid-State Circuits Conference (ISSCC) 136â138 (IEEE, 2018).