Nanoscale spin rectifiers for harvesting ambient radiofrequency energy

Klenance
11 Min Read

  • Shaikh, F. K. & Zeadally, S. Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sust. Energ. Rev. 55, 1041–1054 (2016).

    Article 

    Google Scholar
     

  • Shaikh, F. K., Zeadally, S. & Exposito, E. Enabling technologies for green Internet of Things. IEEE Syst. J. 11, 983–994 (2015).

    Article 

    Google Scholar
     

  • Bito, J., Kim, S., Tentzeris, M. & Nikolaou, S. Ambient energy harvesting from 2-way talk-radio signals for ‘smart’ meter and display applications. In 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI) 1353–1354 (IEEE, 2014).

  • Fang, B. et al. Experimental demonstration of spintronic broadband microwave detectors and their capability for powering nanodevices. Phys. Rev. Appl. 11, 014022 (2019).

    Article 

    Google Scholar
     

  • Koohestani, M., Tissier, J. & Latrach, M. A miniaturized printed rectenna for wireless RF energy harvesting around 2.45 GHz. AEU Int. J. Electron. 127, 153478 (2020).

    Article 

    Google Scholar
     

  • Olgun, U., Chen, C.-C. & Volakis, J. L. Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs. In 2010 URSI International Symposium on Electromagnetic Theory 329–331 (IEEE, 2010).

  • Sharma, R. et al. Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting. Nat. Commun. 12, 2924 (2021).

    Article 

    Google Scholar
     

  • Vallem, V., Sargolzaeiaval, Y., Ozturk, M., Lai, Y. C. & Dickey, M. D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 33, 2004832 (2021).

    Article 

    Google Scholar
     

  • Iqbal, N., Masood, M., Nasir, A. A. & Qureshi, K. K. Review of contemporary energy harvesting techniques and their feasibility in wireless geophones. Int. J. Energy Res. 46, 5703–5730 (2022).

    Article 

    Google Scholar
     

  • Tran, L.-G., Cha, H.-K. & Park, W.-T. RF power harvesting: a review on designing methodologies and applications. Micro Nano Syst. Lett. 5, 14 (2017).

    Article 

    Google Scholar
     

  • IEEE Computer Society LAN/MAN Standards Committee. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks-Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. in IEEE Std 802.11 (IEEE, 2007). https://doi.org/10.1109/IEEESTD.2007.373646

  • Hemour, S. & Wu, K. Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102, 1667–1691 (2014).

    Article 

    Google Scholar
     

  • Hemour, S. et al. Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans. Microw. Theory Techn. 62, 965–976 (2014).

    Article 

    Google Scholar
     

  • Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Article 

    Google Scholar
     

  • Strohm, K. M., Buechler, J. & Kasper, E. SIMMWIC rectennas on high-resistivity silicon and CMOS compatibility. IEEE Trans. Microw. Theory Techn. 46, 669–676 (1998).

    Article 

    Google Scholar
     

  • Suh, Y.-H. & Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Techn. 50, 1784–1789 (2002).

    Article 

    Google Scholar
     

  • Lorenz, C. H. P. et al. Breaking the efficiency barrier for ambient microwave power harvesting with heterojunction backward tunnel diodes. IEEE Trans. Microw. Theory Techn. 63, 4544–4555 (2015).

    Article 

    Google Scholar
     

  • Cansiz, M., Altinel, D. & Kurt, G. K. Efficiency in RF energy harvesting systems: a comprehensive review. Energy 174, 292–309 (2019).

    Article 

    Google Scholar
     

  • Assogba, O., Mbodji, A. K. & Diallo, A. K. Efficiency in RF energy harvesting systems: a comprehensive review. In 2020 IEEE International Conference on Natural and Engineering Sciences for Sahel’s Sustainable Development—Impact of Big Data Application on Society and Environment (IBASE-BF) 1–10 (IEEE, 2020).

  • Chen, Y.-S. & Chiu, C.-W. Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting. IEEE Trans. Antennas Propag. 65, 2305–2317 (2017).

    Article 

    Google Scholar
     

  • Kim, J. & Jeong, J. Design of high efficiency rectifier at 2.45 GHz using parasitic canceling circuit. Microw. Opt. Technol. Lett. 55, 608–611 (2013).

    Article 

    Google Scholar
     

  • Mbombolo, S. E. F. & Park, C. W. An improved detector topology for a rectenna. In 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications 23–26 (IEEE, 2011).

  • Olgun, U., Chen, C.-C. & Volakis, J. L. Investigation of rectenna array configurations for enhanced RF power harvesting. IEEE Antennas Wireless Propag. Lett. 10, 262–265 (2011).

    Article 

    Google Scholar
     

  • Shi, Y. et al. An efficient fractal rectenna for RF energy harvest at 2.45 GHz ISM band. Int. J. RF Microw. 28, e21424 (2018).


    Google Scholar
     

  • Wang, D. & Negra, R. Design of a rectifier for 2.45 GHz wireless power transmission. In 8th Conference on Ph.D. Research in Microelectronics & Electronics (PRIME 2012) 1–4 (VDE, 2012).

  • Valenta, C. R. Fundamental limitations for Schottky diode RF energy harvesting. In 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA) 188–193 (IEEE, 2015).

  • Miwa, S. et al. Highly sensitive nanoscale spin-torque diode. Nat. Mater. 13, 50–56 (2014).

    Article 

    Google Scholar
     

  • Valenta, C. R. & Durgin, G. D. Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15, 108–120 (2014).

    Article 

    Google Scholar
     

  • Vera, G. A., Georgiadis, A., Collado, A. & Via, S. Design of a 2.45 GHz rectenna for electromagnetic (EM) energy scavenging. In 2010 IEEE Radio and Wireless Symposium (RWS) 61–64 (IEEE, 2010).

  • Assimonis, S. D., Fusco, V., Georgiadis, A. & Samaras, T. Efficient and sensitive electrically small rectenna for ultra-low power RF energy harvesting. Sci. Rep. 8, 15038 (2018).

    Article 

    Google Scholar
     

  • Adami, S.-E. et al. A flexible 2.45-GHz power harvesting wristband with net system output from −24.3 dBm of RF power. IEEE Trans. Microw. Theory Techn. 66, 380–395 (2017).

    Article 

    Google Scholar
     

  • Song, C. et al. A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans. Antennas Propag. 63, 3486–3495 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Shen, S., Zhang, Y., Chiu, C.-Y. & Murch, R. A triple-band high-gain multibeam ambient RF energy harvesting system utilizing hybrid combining. IEEE Trans. Ind. Electron. 67, 9215–9226 (2019).

    Article 

    Google Scholar
     

  • P21XX Powerharvester Chipset Reference Design Evaluation Board (Powercast Corporation, 2018); https://powercastco.com/wp-content/uploads/2021/06/P21XXCSR-EVB-Datasheet-v2.1-1.pdf

  • Finocchio, G. et al. Perspectives on spintronic diodes. Appl. Phys. Lett. 118, 160502 (2021).

    Article 

    Google Scholar
     

  • Tulapurkar, A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article 

    Google Scholar
     

  • Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018).

    Article 

    Google Scholar
     

  • Fang, B. et al. Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat. Commun. 7, 11259 (2016).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Ultrahigh detection sensitivity exceeding 105 V/W in spin-torque diode. Appl. Phys. Lett. 113, 102401 (2018).

    Article 

    Google Scholar
     

  • Jenkins, A. et al. Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme. Nat. Nanotechnol. 11, 360–364 (2016).

    Article 

    Google Scholar
     

  • Tsunegi, S. et al. Achievement of high diode sensitivity via spin torque-induced resonant expulsion in vortex magnetic tunnel junction. Appl. Phys. Express 11, 053001 (2018).

    Article 

    Google Scholar
     

  • Goto, M. et al. Uncooled sub-GHz spin bolometer driven by auto-oscillation. Nat. Commun. 12, 536 (2021).

    Article 

    Google Scholar
     

  • Leroux, N. et al. Radio-frequency multiply-and-accumulate operations with spintronic synapses. Phys. Rev. Appl. 15, 034067 (2021).

    Article 

    Google Scholar
     

  • Zhu, J. et al. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012).

    Article 

    Google Scholar
     

  • Zero-Bias Schottky Diode Detectors (Herotek, Inc., 2022); http://www.herotek.com/datasheets/pdf/Zero-Bias_Schottky_Diode_Detectors_100kHz-50Ghz.pdf

  • Nozaki, T. et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat. Phys. 8, 491–496 (2012).

    Article 

    Google Scholar
     

  • Scheike, T., Wen, Z., Sukegawa, H. & Mitani, S. 631% room temperature tunnel magnetoresistance with large oscillation effect in CoFe/MgO/CoFe(001) junctions. Appl. Phys. Lett. 122, 112404 (2023).

    Article 

    Google Scholar
     

  • Nozaki, T. et al. Highly efficient voltage control of spin and enhanced interfacial perpendicular magnetic anisotropy in iridium-doped Fe/MgO magnetic tunnel junctions. NPG Asia Mater. 9, e451 (2017).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Enhanced broad-band radio frequency detection in nanoscale magnetic tunnel junction by interface engineering. ACS Appl. Mater. Interfaces 11, 29382–29387 (2019).

    Article 

    Google Scholar
     

  • Nitzan, S. H. et al. Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope. Sci. Rep. 5, 9036 (2015).

    Article 

    Google Scholar
     

  • Rhodes, J.Jr. Parametric self-excitation of a belt into transverse vibration. J. Appl. Mech. 37, 1055–1060 (1970).

    Article 

    Google Scholar
     

  • Tomasello, R. et al. Low-frequency nonresonant rectification in spin diodes. Phys. Rev. Appl. 14, 024043 (2020).

    Article 

    Google Scholar
     

  • Sadagopan, K. R., Kang, J., Ramadass, Y. & Natarajan, A. A 960 pW co-integrated-antenna wireless energy harvester for WiFi backchannel wireless powering. In 2018 IEEE International Solid-State Circuits Conference (ISSCC) 136–138 (IEEE, 2018).

  • Source link

    Share This Article
    Leave a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *